This project examines the distribution of various work terms (work against gravity, work against friction, internal strain work, seismic energy release etc ...) within evolving fault systems.
Wtotal = Wgravity + Wfriction + Winternal + Wseismic + Wpropagation
The premise investigated is that fault systems evolve (ie. develop new fault surfaces) in order to minimize work. Lazy faults will distribute deformation as fault slip while non-lazy faults will store deformation in the surrounding host rock. Fault slip is an effective way for the system to release energy by both fricitonal heating and seismic radiated energy, which are lost to the system. In contrast, uplift against gravity and internal deformation both store energy within the system.
Within analog models accretionary prisms, we see a shift from underthrusting to accretion. |
Our numerical models show that this transition is controlled the work of the system. The new thrust (accretionary) fault develops when the work benefit of the new fault exceeds the work cost of creating the fault. |
The position and vergence of the new faults act to minimize the overall work of the system.
• 2D mechanical efficiency analysis of the Los Angeles Basin:
Cooke, Michele and Ayako Kameda, 2002. Mechanical Fault Interaction within the Los Angeles Basin: A Two-Dimensional Analysis using Mechanical Efficiency, Journal of Geophysical Research: vol.I107(B7), doi:10.1029/2001JB000542 (PDF file)• Fault System Evolution
Olson and Cooke, in press. Application of Three Fault Growth Criteria to the Puente Hills Thrust System, Los Angeles, California, USA Journal of Structural Geology. Nov 2004 (PDF file)
3D Patterns of strain energy density outline the lateral growth of the Puente Hills echelon thrust fault system.
Three-dimensional VRML models of strain energy density around the faults at each stage of evoltuion:
Step 1: Whittier and Chino faults
Step 2: Whittier, Chino and Coyote Hills faults
Step 3: Whittier, Chino, Coyote Hills and Santa Fe Springs faults
Step 4: Whittier, Chino, Coyote Hills, Santa Fe Springs and Los Angeles faults• Work budget of active fault systems
Cooke and Murphy, 2004. Assessing the work budget and efficiency of fault systems using mechanical models Journal of Geophysical Research, doi:10.1029/2004JB002968 (PDF file)